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Abstract
Aim: To improve the accuracy of inferences on habitat associations and distribution 
patterns of rare species by combining machine- learning, spatial filtering and resam-
pling to address class imbalance and spatial bias of large volumes of citizen science 
data.
Innovation: Modelling rare species’ distributions is a pressing challenge for conserva-
tion and applied research. Often, a large number of surveys are required before enough 
detections occur to model distributions of rare species accurately, resulting in a data 
set with a high proportion of non- detections (i.e. class imbalance). Citizen science data 
can provide a cost- effective source of surveys but likely suffer from class imbalance. 
Citizen science data also suffer from spatial bias, likely from preferential sampling. To 
correct for class imbalance and spatial bias, we used spatial filtering to under- sample 
the majority class (non- detection) while maintaining all of the limited information from 
the minority class (detection). We investigated the use of spatial under- sampling with 
randomForest models and compared it to common approaches used for imbalanced 
data, the synthetic minority oversampling technique (SMOTE), weighted random for-
est and balanced random forest models. Model accuracy was assessed using kappa, 
Brier score and AUC. We demonstrate the method by evaluating habitat associations 
and seasonal distribution patterns using citizen science data for a rare species, the 
tricoloured blackbird (Agelaius tricolor).
Main Conclusions: Spatial under- sampling increased the accuracy of each model and 
outperformed the approach typically used to direct under- sampling in the SMOTE al-
gorithm. Our approach is the first to characterize winter distribution and movement of 
tricoloured blackbirds. Our results show that tricoloured blackbirds are positively as-
sociated with grassland, pasture and wetland habitats, and negatively associated with 
high elevations or evergreen forests during both winter and breeding seasons. The 
seasonal differences in distribution indicate that individuals move to the coast during 
the winter, as suggested by historical accounts.
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1  | INTRODUCTION

Understanding the factors driving the geographical distribution of or-
ganisms is one of the fundamental motivators of ecological research. 
Species distribution models (SDM) are commonly used to describe and 
predict species distributions by relating a suite of environmental vari-
ables to geographical locations where searches have been conducted 
(Guisan & Zimmerman, 2000). Effectively modelling a species’ distri-
bution often requires a high- quality data set with enough presence–
absence information at sites throughout the range of the species 
(Brotons,	Thuiller,	Arau′	jo,	&	Hirzel,	2004).

When the objective is to make inferences on rare, range- restricted 
or hard to detect species, the data requirements of distribution mod-
els can be especially challenging. Rare species often do not occupy 
all suitable habitat in a region, may be patchily distributed (e.g. locally 
abundant but regionally rare) and can be difficult to detect (McCune, 
2016; Pacifici, Reich, Dorazio, & Conroy, 2015). This results in small 
numbers of positive detections, making it difficult to accurately predict 
distributions and making it easier to overfit them when used in statis-
tical models, even with few number of explanatory variables (Vaughn 
& Ormerod, 2005). These challenges are exacerbated when the ob-
jective is to make inferences on the factors driving the distribution 
patterns of a species with habitat associations that differ throughout 
the annual life cycle of the species (e.g. migratory birds; Moore, 2000). 
While there have been advances in rare species sampling techniques 
(e.g. Conroy, Runge, Barker, Schofield, & Fonnesbeck, 2008; Guisan 
et al. 2006; Pacifici, Dorazio, & Conroy, 2012), there have been few 
developments focusing on how to utilize rare species data collected 
by large- scale citizen science projects. These projects have the po-
tential to collect large numbers of positive detections; however, they 
also tend to collect even larger numbers of non- detections resulting 
in highly imbalanced presence–absence data sets.

Class imbalance occurs where the sample from one class (e.g. 
absences) is much larger than the sample from the other class (e.g. 
presences). Most often for rare event data, inferences are depen-
dent on the information obtained from the minority class, such as 
the presence of a rare species, an incidence of an emergent disease 
or fraud detection. However, the volume of information for major-
ity class, such as the number of healthy individuals, may overwhelm 
the model (Longadge, Dongre, & Malik, 2013). For example, if a rare 
disease is prevalent in only 0.5% of patients sampled, a model could 
simply choose the default strategy of always guessing that a patient is 
healthy (e.g. the negative class) and be correct 99.5% of the time. The 
degree of accuracy of the model is high, but the model will fail to make 
accurate predictions and will have little ability to identify the factors 
that drive the likelihood of contracting the disease or the class of inter-
est. Further, Fithian and Hastie (2014) showed that logistic regression 
(often used in SDM) becomes less accurate as the classes move away 
from balance.

One approach to address bias related to class imbalance is to base 
inferences only on positive detections of individuals, otherwise known 
as presence- only models in the SDM literature. These models have be-
come increasingly common (Hirzel, Hausser, Chessel, & Perrin, 2002; 

Phillips, Anderson, & Schapire, 2006), and many studies (36% in a re-
view by Yackulic et al. 2013) have resorted to discarding absence data 
and using a presence- only method. However, throwing out absence 
data removes information useful for modelling, often increasing the 
risk of sampling bias (Fithian, Elith, Hastie, & Keith, 2015), and has 
been shown to be detrimental to the accuracy of the SDM, particularly 
when the majority of the data is absence data (Brotons et al., 2004).

Class imbalance issues are not unique to SDMs (He & Garcia 2009) 
and have been identified and long studied in fields as varied as oil spill 
detection from satellite images (Kubat, Holte, & Matwin, 1998), text 
classification (Lewis & Ringuette, 1994) and rare disease diagnosis 
(Woods et al., 1993). There are effective methods for handling class- 
imbalanced data. Kubat and Matwin (1997) proposed resampling ob-
servations from the minority class with replacement (oversampling), 
or randomly removing observations from the majority class (under- 
sampling or one- sided sampling), until the classes are balanced. Ling 
and Li (1998) and Japkowicz (2000) showed that under- sampling gen-
erally performed better than oversampling. Case–control sampling 
draws samples uniformly from each class and adjusts the sample to 
correct for imbalance. This method has been further developed to in-
clude local case–control sampling, which preferentially samples obser-
vations that are conditionally rare (Fithian & Hastie, 2014).

Chawla, Bowyer, Hall, and Kegelmayer (2002) proposed a method 
that creates synthetic examples from the minority class that are not 
exact copies, as in traditional oversampling, but that occupy the pa-
rameter space between a randomly drawn observation and a near-
est neighbour, called the synthetic minority oversampling technique 
(SMOTE). The application of SMOTE has been shown to create data 
sets that produced more accurate classification models, when used 
with machine- learning classification methods, relative to traditional 
oversampling or under- sampling alone (Chawla et al., 2002). In addi-
tion, they found that SMOTE was most effective when used in con-
junction with under- sampling.

Machine- learning methods, such as random forest (RF), are in-
creasingly being applied to address ecological classification prob-
lems (Cutler, Edwards, Beard, Cutler, & Hess, 2007; Mi, Huttmann, 
Guo, Han, & Wen, 2017). RF is an ensemble method where a large 
number of individual decision tree models are induced by taking 
bootstrap samples of the data. Chen, Liaw, and Breiman (2004) pro-
posed two simple modifications to RF that make it suitable to make 
inferences using highly imbalanced data sets One of the proposed 
modifications is a balanced RF (BAL), where the model first draws 
bootstrap samples from the minority class and then draws an equal 
number of samples from the majority class, thereby balancing the 
classes. Another modification is a weighted RF (WRF), and here, the 
model assigns a harsher penalty to the misclassification of the mi-
nority class than the majority class (often proportional to the class 
prevalences). Chen et al. (2004) were able to show that BAL and 
WRF were superior to one- sided sampling and SMOTE when ap-
plied to multiple data sets, but neither approach (BAL and WRF) 
outperformed the other.

The development of citizen science monitoring programs to sur-
vey species has proven to be a powerful tool towards addressing 
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data limitations of distribution models (Fink et al., 2014; Theobald 
et al., 2015). Citizen science monitoring programs are often able to 
accommodate or provide cost- effective surveys across numerous 
sites and times of the year (Tulloch et al. 2013). Although some cit-
izen science monitoring programs have highly structured protocols 
(e.g. Weir & Mossman, 2005), most projects have very flexible and 
open levels of participation and are not limited to a specific sam-
pling method or season. When guidelines for data collection are 
kept minimal, citizen science programs can engage large numbers 
of participants and collect large volumes of data that are useful for 
characterizing species distributions from the local to the continental 
scale (e.g. Fink et al., 2010). Although these characteristics of citizen 
science monitoring programs often generate relatively large num-
bers of species detections, class imbalance and other biases associ-
ated with citizen science data remain as challenges when modelling 
distributions for rare species with presence–absence data (Sullivan 
et al., 2014).

A major obstacle with citizen science programs is the irregular 
and often sparse spatial pattern of observations. Citizen scientists 
who participate in surveys are more likely to sample close to home 
(Luck, Ricketts, Daily, & Imhoff, 2004), convenient locations (e.g. 
roadsides; Kadmon, Farber, & Danin, 2004), or in accessible areas 
where biodiversity is known to be high (Prendergast, Wood, Lawton, 
& Eversham, 1993). This preferential sampling can translate into bias 
in spatial and environmental predictors associated with occurrence 
data (Geldmann et al., 2016). Citizen science data may also suffer 
from temporal bias, providing more information from specific times 
of the year when observers are more active, when certain species are 
present or when they are available to conduct surveys (e.g. weekend 
bias; Courter, Johnson, Stuyck, Lang, & Kaiser, 2012). This temporal 
bias may also add to spatial bias if observers are visiting specific lo-
cations for certain species during a given period of the annual cycle, 
such as repeatedly going to known breeding sites during the breed-
ing season.

When not properly accounted for, preferential sampling may also 
lead to an increase in spatial autocorrelation, subsequent overfit-
ting of the model and inaccurate model evaluation statistics (Boria, 
Olson, Goodman, & Anderson, 2014; Hijmans, 2012). Due to the lack 
of survey design in most citizen science programs, model- based ap-
proaches are the most effective method to account for bias inherent 
to these data, and modelling the sampling process itself can greatly 
improve accuracy of SDMs (e.g. Conn, Thorson, & Johnson, 2016). 
To date, most SDM approaches have been limited in their ability to 
improve our current capacity to accurately make inferences on fac-
tors driving the distribution of rare species. For example, Boria et al. 
(2014) proposed a spatial filtering technique to improve the accu-
racy of SDMs by only including species detections that were at least 
a given distance apart when using a presence- background method. 
Given that most rare species have few detections and that some may 
have clumped distributions where many detections are likely to occur 
close together in space, this spatial filtering technique may create 
a situation where too much information is lost when presence data 
are removed. Even though citizen science data also tend to increase 

information, the number of detections for a rare species will likely 
remain low even as the number of surveys increases. Therefore, there 
is a clear need to address both spatial bias and class imbalance in 
SDMs in order to effectively use citizen science survey data to model 
rare events.

In this study, we propose an approach to improve the accuracy 
of inferences on the habitat associations and distribution patterns of 
rare, range- restricted or hard to detect species by combining machine- 
learning, spatial filtering and resampling to address class imbalance 
and spatial bias of large volumes of citizen science data. We accom-
plish this using a RF approach that allows spatial filtering to direct the 
under- sampling of the majority class and compare our approach with 
other current methods used to deal with spatial bias and class imbal-
ance. We illustrate the utility of our approach by modelling the winter 
and spring distributions of the tricoloured blackbird (Agelaius tricolor) 
using citizen science data from eBird (www.ebird.org; Sullivan et al., 
2014). Tricoloured blackbirds are rare within their range but may be lo-
cally abundant at many sites. Their occupied region, rarity and patchy 
distribution make inferences on this species prone to spatial bias and 
class imbalance for presence–absence data, and thus, an ideal case 
study for our method.

2  | MATERIALS AND METHODS

2.1 | Study species

Tricoloured blackbirds are almost entirely restricted to California, 
with a small number (~1% of the total population) breeding in Oregon, 
Washington and Nevada in the United States, and Baja California in 
Mexico (Meese, Beedy, & Hamilton, 2014). Historically, tricoloured 
blackbirds used freshwater wetlands as breeding sites; however, 
more than 90% of the suitable wetlands were lost from 1780 to 1980 
(Dahl, 1990). This has caused tricoloured blackbirds to seek alterna-
tive breeding sites, and many colonies are now found breeding in 
agricultural fields and invasive plants such as Himalayan blackberry 
(Rubus armeniacus) and milk thistle (Silybum marianum; Meese, 2009). 
While the reproductive success of colonies that breed in alternative 
habitats have been shown to be similar to, or greater than, those in 
the traditional wetland habitats, the population continues to decline 
(Holyoak, Meese, & Graves, 2014; Weintraub, George, & Dinsmore, 
2016). Breeding tricoloured blackbirds may have multiple breeding 
attempts in a single season, potentially at a different site within the 
same breeding season, and are also not likely to use the same breeding 
sites each year but seem to prefer the same habitat types (DeHaven, 
Crase, & Woronecki, 1975).

Recent work has produced considerable knowledge of the distri-
bution of tricoloured blackbirds during the breeding season, but the 
habitat requirements and distribution during the non- breeding period 
(winter) are poorly understood (Meese et al., 2014). There is specula-
tion that tricoloured blackbirds withdraw from the northern parts of 
their range and move towards coastal California and the San Joaquin 
and Sacramento River deltas during winter (DeHaven et al., 1975). 
However, observational data for this portion of their annual cycle are 

http://www.ebird.org
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sparse, and their movements throughout the year are described as 
nomadic.

2.2 | Data

We collected data from eBird on checklists submitted in November- 
January and March- July of 2008–2014. Data were restricted to these 
time periods to capture the habitat associations of winter feeding and 
roosting patterns, and the time when the species is expected to be 
nesting and foraging to feed young (Meese, personal communication). 
Checklists were restricted to California as almost all of the known 
observations of tricoloured blackbirds are located within that state. 
More details about the filtering process for eBird data can be found in 
Appendix S1. We linked each checklist location with remotely sensed, 
spatial covariates from the Cropland Data Layer (CDL; Boryan, Yang, 
Mueller, & Craig, 2011; Han, Yang, Di, & Mueller, 2012). The National 
Agricultural Statistics Service of the US Department of Agriculture has 
produced the CDL each year since 1997, although for some states, the 
data begin in later years. It contains crop and land cover specific infor-
mation that is georeferenced, verified via ground truth, at 30 or 56 m 
resolution and generally 85% to 95% accurate for most crop classes 
(Boryan et al., 2011; Han et al., 2012). We created 1.5 by 1.5 km pix-
els centred on each checklist location and used the CDL for the year 
in which the checklist was submitted to determine the per cent land 
cover of 105 crop or land cover classes and the elevation therein. 
We also included the effort variables of time, distance travelled, area 
searched and number of observers in each model to account for vari-
ation in detectability of tricoloured blackbirds. After constraining the 
data, we had 411,535 total checklists, 108,880 for the winter and 
302,655 for the breeding season.

2.3 | Sampling methods and distribution models

Using the R package randomForest (Liaw & Wiener, 2002), we used 
random forest (RF) to separately model the breeding and winter oc-
currence of tricoloured blackbird’s relationship to land cover and 
effort variables. As only ~1.5% of our eBird checklists recorded a 
“presence” for the species, we were concerned that class imbalance 
would potentially bias our results. To combat the class imbalance, 
we also tested BAL, WRF and SMOTE on our spring checklist data. 
Because our data contained such a low number of presence observa-
tions, we allowed the bootstrap sample drawn by BAL to equal the 
number of presence observations in the data set. For example, if the 
number of presence observations in the training data set for a BAL 
model was 1000, we allowed all 1000 detection observations to be 
used and drew 1000 random observations from those checklists that 
contained non- detection observations to run the model. For WRF, we 
weighted correctly classifying detection versus correctly classifying 
a non- detection as 100:1 (roughly the reciprocal of the class ratio). 
When using the SMOTE algorithm to resample the data, we doubled 
the number of presence observations by adding synthetic examples to 
the observed ones and randomly under- sampled the absences so that 
the classes were equally balanced (Chawla et al., 2002).

In addition to class imbalance, there was a noticeable spatial bias 
in our checklist locations that could potentially cause inaccuracies in 
our model results (Figure 1a). While the SMOTE algorithm thinned 
the data considerably while increasing the number of detections, it 
did not remedy the issue of spatial bias (Figure 1b). To improve the 
spatial balance of our data set, we created a bounding box (approxi-
mately 1053 km by 914.5 km) where each corner was one of the four 
combinations of maximum and minimum latitude and longitude of all 

F IGURE  1 Breeding season checklists from eBird to be used in data analysis after no sampling method (a), SMOTE (b) and spatial under- 
sampling (c). Grey points represent checklists that did not have a tricoloured blackbird detection, and red points represent those that did have a 
tricoloured blackbird detection
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checklists included in our data set. We then created a 100 by 100 
cell grid within the bounding box. To keep all of the information on 
presence observations, we split the data into two data sets: those 
checklists with a detection recorded for tricoloured blackbirds and 
those without a detection. We sampled one non- detection checklist at 
random from all the non- detection checklists within a given cell. This 
resulted in a more spatially balanced set of non- detection checklists. If 
a grid square had no non- detection checklists, no checklist was sam-
pled from that cell. We then recombined the detection data with the 
grid- sampled non- detection data to create a spatially under- sampled 
detection/non- detection data set for analysis (Figure 2).

We examined accuracy measures for distribution models fit using 
RF 1) without a sampling technique applied to the data, 2) with the pro-
posed techniques to deal with spatial bias and class imbalance (BAL, 
WRF and RF with SMOTE combined with random under- sampling; 
Chawla et al., 2002). In addition, we compared all four approaches 
described above under a scenario where the data were sampled via 
our spatial under- sampling method. For the analysis where we com-
bined the SMOTE algorithm with our proposed technique, we used 
our spatial under- sampling method instead of random under- sampling. 
We split the data from eBird (for the first four methods) and the spa-
tially under- sampled data (for the last four methods) into 50 random 
training and testing sets where half of the data was training and half 

testing. We ran each of the eight models on each training set and eval-
uated the accuracy of the models on each testing set. We used a spa-
tially under- sampled testing set as the inferential target is detections 
across the state of California, where each location is equally important. 
Therefore, a spatially balanced testing set of locations is required. For 
each RF analysis (including all variations used), the number of classifi-
cation trees in the ensemble was set to 1000 and the number of vari-
ables from which each model could select at each split for each tree 
was 11 (≈

√
114 ), following the recommendation of using the square 

root of the number of variables included in the model (James, Witten, 
Hastie, & Tibshirani, 2013).

2.4 | Accuracy measures

We collected multiple model evaluation metrics at each run to char-
acterize and compare the performance of the sampling methods. As 
RF is a Bootstrap AGgregation (BAGging) ensemble technique, it uses 
60–70% of the data for each classification tree in the ensemble. For 
each model in the ensemble, the 30–40% of the data left out of the 
analysis, or out of bag, and used a test set to validate that model. The 
final out of bag estimates used for validation are averaged across the 
ensemble (James et al., 2013). The resulting metric is referred to as 
the out of bag error (OOB). This metric is highly sensitive to class 

F IGURE  2 Schematic diagram of how we filtered the data for each season via spatial under- sampling before using it with one of the 
following methods: random forest (RF), synthetic minority oversampling (SMOTE) with RF, weighted random forest (WRF) and balanced random 
forest (BAL)
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imbalance as it favours total accuracy over correctly predicting minor-
ity classes.

For this reason, we evaluated predictive performance on the in-
dependent test set. We used three statistics to characterize specific 
aspects of predictive performance. We used the area under the curve 
(AUC) to measure the model’s ability to discriminate between positive 
and negative observations (Fielding & Bell 1997). The AUC is equal to 
the probability that the model will rank a randomly chosen positive 
observation higher than a randomly chosen negative one. Thus, AUC 
depends only on the ranking of the predictions.

To measure the models ability to accurately predict the binary 
detection/non- detection responses, we computed sensitivity (true 
positive rate; TPR), specificity (true negative rate; TNR) and Cohen’s 
Kappa statistic (Cohen, 1960). Kappa (k) was designed to measure 
predictive performance taking into account the background rate of 
occurrence as

where po is the observed agreement between the predictions made by 
the model and the test data

and pe is a measure of how often the model and test data would agree 
by chance

where m is the proportion of times the model predicted a presence (1) 
or absence (0), and d is the proportion of presences or absences in the 
test data set. Calculating kappa, TPR and TNR, required a threshold to 
convert the probabilities predicted by RF into the binary detection/
non- detection responses. The threshold value chosen for each of the 
50 random data sets was the value that maximized kappa for the data 
set used in an individual run.

Finally, to measure the quality for the predicted probabilities, we 
computed the Brier score (BS; Brier, 1950) as the mean squared error 
between probabilistic predictions from our model and the binary pres-
ence/absence data in the test set. Formally,

where M is a set of i validation pairs 
{(
p1,o1

)
,… ,

(
pi,oi

)}
 and pi is the 

probabilistic prediction made by the model for the i- th observation 
with observed presence/absence oi. Brier scores are affected by dis-
crepancies between predicted probabilities and empirical probabil-
ities based on the observed data without requiring the choice of a 
threshold.

We then evaluated the models based on the predictive perfor-
mance metrics above and chose the best method from which to create 
SDMs for tricoloured blackbirds in the winter and spring. Each SDM 

recorded the predictor importance statistics from each model for 
the time period over which they were evaluated. We evaluated the 
marginal effect of each variable on the probability of occurrence to 
determine the habitat associations for tricoloured blackbirds in each 
season. This approach has been shown to accurately estimate complex 
data generating processes with simulated and ecological data (Sethi, 
Dalton, & Hilborn, 2012). We then used the output of each SDM to 
create winter and breeding season distribution maps for tricoloured 
blackbirds in California.

3  | RESULTS

Tricoloured blackbirds were present in only 1.7% (1,900 detections 
on 108,880 checklists) of the winter and 1.3% (3,973 detections on 
302,655 checklists) of the breeding season checklists. Our spatial 
under- sampling method greatly reduced the class imbalance and gave 
better spatial balance and representation to the data than no sampling 
technique or SMOTE (Figure 1). After running the models on the 50 
randomly drawn data sets, the models using data that had been spa-
tially under- sampled proved to be more accurate when compared to 
their non- spatially under- sampled counterpart with the exception of 
the OOB measure. All models had similar sensitivity and specificity. 
No one model was measurably better than another when using the 
same data sampling method (Figures 3 and 4). RF had the lowest OOB 
(mean = 0.001, SD = 0.0002), and WRF was the second lowest OOB 
(0.013, 0.004). These results are not surprising; RF and WRF used all 
of the checklists without any sampling technique applied. This kept 
the class imbalance intact in these data sets and OOB is highly influ-
enced by the class imbalance.

We chose the RF model with spatial under- sampling for our SDMs 
for tricoloured blackbirds. Once spatially under- sampled and split in 
half to create training and validation data, our breeding season training 
data that went into the model contained 2005 detections on 4780 
(42%) checklists and the winter data had 958 detections on 2760 
checklists (35%). For making inferences on the occurrence patterns of 
tricoloured blackbird during the breeding season, the variables grass/
pasture and evergreen forest had the highest variable importance 
score (VI; Appendix S2). The most important and positively associated 
variables were grass/pasture (#1 highest VI; Figure 4), developed/
open (#4 VI) and herbaceous wetland (#5 VI). The most important and 
negatively associated variables were evergreen forest (#2 VI), shru-
bland (#3 VI) and elevation (#6 VI). The results are somewhat similar 
for winter occurrence; two variables that were clearly the most im-
portant were grass/pasture and herbaceous wetland (Appendix S2). 
The most important and positively associated variables were grass/
pasture (highest overall ranked VI; Figure 5), herbaceous wetland (#2 
VI), open water (#5 VI) and woody wetland (#7 VI). The most import-
ant and negatively associated variables were evergreen forest (#3 VI), 
shrubland (#4 VI) and elevation (#6 VI).

The distribution maps (Figure 6) predicted a higher probability of 
occurrence in the Central Valley and more “hotspots” overall, particu-
larly in the interior of California for the breeding season. For the winter 

k=
po−pe

1−pe

po=TPR+TNR

pe=m1 × d1+ m0 × d0

BS=
1

||M||

|M|∑

i=1

(
pi−oi

)2
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distribution, the locations of highest probability of occurrence were 
along the coast, in the San Joaquin and Sacramento River deltas, and 
central Merced County; however, the overall probability of occurrence 
was lower in winter, even in the areas predicted to have the highest 
probability of occurrence during that season.

4  | DISCUSSION

Species distribution models play an important role in both ecological 
research, and more applied fields that inform conservation planning. 
However, data for rare or hard to sample species are costly to col-
lect and are often lacking. Citizen science monitoring programs can 
be used to augment data sets for data- poor species, but it is not often 
used for reasons concerning biases in the collected data (Theobald 
et al., 2015). To address these challenges, we combined random forest 
with the data sampling techniques of under- sampling and spatial fil-
tering. Our results show that spatial under- sampling can improve the 
accuracy measures of each of the SDM approaches that we tested, 
even when using a spatially biased and class- imbalanced citizen sci-
ence data set. Model accuracy as measured by OOB was lower for 
the two models (RF and WRF) that made use of the entire imbalanced 

data set relative to the spatially under- sampled RF and WRF. This is at-
tributable to the fact that the two latter models could have predicted 
an “absence” for each observation in the test data set for each run 
and been correct for more than 98% of the test observations. Thus, 
OOB is a poor measure of accuracy when using class- imbalanced data. 
While there was a small gain in sensitivity with spatial under- sampling, 
there was no loss of specificity. This is also reflected in our measure 
of kappa, as both specificity and sensitivity are used in its calculation. 
The loss of specificity was a concern as any under- sampling technique 
removes information used by the model, in our case, absences. True 
absence data in SDMs lead to higher accuracy in general and may be 
vital for ecologically meaningful evaluations of SDMs (Brotons et al., 
2004; Václavík & Meentemeyer, 2009). Therefore, it was important 
not to lose specificity for the objective of gaining sensitivity.

The AUC for models using spatial under- sampling was higher than 
their non- spatially under- sampled counterparts, but the AUC for all 
models was relatively high (>0.85). We also computed Brier score to 
evaluate the accuracy of each model. Brier score allows the proba-
bilistic predictions to be directly compared to the binary presence/
absence data in the test set. The Brier score for each of the spatially 
under- sampled models consistently showed an improvement over the 
models not using that method.

F IGURE  3 Accuracy metrics (OOB, AUC, Brier Score, Sensitivity, Specificity, and Kappa) for the different SDM models run over 50 randomly 
drawn tricoloured blackbird data sets. The models used were random forest (RF), weighted random forest (WRF), balanced random forest (BAL) 
and RF with synthetic minority oversampling technique (SM). Models with the prefix “SU” used our spatial under- sampling technique
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We used RF in concert with the spatial under- sampling tech-
nique to build winter and breeding season distribution maps for 
tricoloured blackbirds and to evaluate their habitat associations in 
each season. We chose this method because there was no discern-
able difference among the different RF models using spatial under- 
sampling. BAL would have further and randomly under- sampled 
the minority class, removing absence data that had been spatially 
stratified. The WRF model required considerably more computing 
time than the other models for no obvious gain, so we decided 
against its use. In addition, the SMOTE approach, combined with 
the spatial under- sampling, did not prove more accurate than the 

other models. Oversampling techniques may lead to the overfitting 
of a model (Weiss, 2004). SMOTE combats overfitting by creating 
synthetic examples rather than exact copies of the minority class, 
thereby creating more generality and reducing the chance of over-
fitting. However, as it did not improve the accuracy of our models, it 
was not necessary for our data.

Our results indicate that tricoloured blackbirds are positively as-
sociated with grassland, pasture and wetland habitats, and negatively 
associated with high elevations or evergreen forests during both 
the winter and breeding seasons. Our results also indicate a posi-
tive association with coastal areas and fewer definitive hotspots of 

F IGURE  4 The partial dependence of detection probability (P detection) on the nine most important variables chosen in our breeding season 
habitat random forest analysis. (a) Grass/Pasture, (b) Evergreen Forest, (c) Shrubland, (d) Developed/Open Space, (e) Herbaceous Wetlands, (f) 
Elevation, (g) Developed/ Low Intensity, (h) Day, (i) Open Water
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concentration overall, which agrees with anecdotal evidence and his-
torical accounts (DeHaven et al., 1975; Meese et al., 2014).

We found that the non- crops were most highly associated 
with TRBL because of the extent and resolution of the analysis. 
Evergreen forest and high elevation essentially define the entire 
eastern boundary of the range. The grassland/pasture and herba-
ceous wetland habitats are also very large in comparison with the 
relatively small triticale and alfalfa patches as a fraction of the study 
extent. Thus, associations with these cover classes are generally 
stronger than those for the crop classes, as they effectively define 
the range boundaries and general distribution for TRBL. The crop 
classes act to modify the distribution within the range, and because 

of relatively small footprint of the crop classes associated with 
TRBL, these effects are relatively small. The highest ranked single 
crop is alfalfa (Figure S2.1), the fifteenth ranked predictor in the 
breeding season. Tricoloured blackbirds are known to breed in silage 
fields and forage for insects in alfalfa during the breeding season 
(Weintraub et al., 2016). We believe that with finer resolution eBird 
data, we may have been able to see stronger relative effects of these 
individual crops, reflecting the finer scale distribution of these crops 
in the landscape. However, using too fine of a resolution could lead 
to location error in eBird checklists.

Our predictions for the distribution during the breeding sea-
son suggest that tricoloured blackbirds move away from the coasts 

F IGURE  5 The partial dependence of detection probability (P detection) on the nine most important variables chosen in our Fall habitat 
random forest analysis. (a) Grass/Pasture, (b) Herbaceous Wetlands, (c) Evergreen Forest (d) Shrubland, (e) Open Water, (f) Elevation, (g) Woody 
Wetlands, (h) Developed/ Low Intensity Day, (i) Effort (hrs)
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towards the interior of California, particularly the Central Valley, 
during this time of year. Our model identified central Merced County 
and the San Joaquin and Sacramento River deltas as important win-
tering areas (Figure 6). These areas are dense with wetland habitats, 
and a large portion of the land in central Merced County is managed 
to preserve grassland and wetland habitats. Much of the portion of 
Merced County that our SDM predicted as an area of high probability 
of occurrence is part of the Grassland Ecological Preserve and identi-
fied by Audubon as an Important Bird Area (http://www.audubon.org/
important-bird-areas). This region is managed through a cooperation 
among private landowners, and state and federal agencies; continued 
efforts to manage these grassland and wetland habitats are likely to 
be important for the long- term persistence of tricoloured blackbird 
populations.

The general spatial extent of our predicted distributions shows a 
high degree of overlap between the breeding and non- breeding sea-
sons. However, we did not find areas where occurrence is predicted 
to be relatively high during the winter. This supports current anec-
dotal information as historical accounts suggest that they form much 
smaller groups and flock with other blackbird species in the winter 
(Meese et al., 2014). This behaviour is also likely to make individu-
als more difficult to detect during this time of the year versus the 
breeding season, where they form large conspecific colonies (Meese 
et al., 2014). This is reflected in our variable importance measures as 
the effort variables representing the duration and distance travelled 
during a checklist were among the top 12 predictors (#9 and #12, 
respectively) for winter occurrence, while they were slightly less im-
portant predictors for the breeding season abundance (#12 and #13). 
What this suggests is that eBird users were required to search longer 
and travel greater distances to detect a tricoloured blackbird during 
the winter.

We also had fewer checklists for the winter than the breeding 
season. As such, there was more information available for training the 
spring distribution model, even after applying spatial under- sampling. 
This temporal bias in the citizen science data could have potentially 

led to a decrease in accuracy for the predicted winter distribution 
relative to the breeding season. One way to decrease this temporal 
bias in the data would be to incentivize eBird users to collect more 
checklists during the winter (e.g. Avicaching; Xue, Davies, Fink, Wood, 
& Gomes, 2016). Xue et al. (2016) showed that participants in citizen 
science could be influenced to collect data in under- sampled areas 
and that the data collected produced more accurate distribution maps 
than those based on data that were not part of the incentivized study. 
It may be possible to incentivize observers to sample during under- 
sampled periods of the year. Our results for the winter season may 
provide guidance on where to incentivize sampling during this time in 
the annual cycle of tricoloured blackbirds.

Estimating distributions for rare species often requires numerous 
surveys that often result in few detections, creating a challenge for 
the application of data- hungry SDM models to make inferences on 
habitat associations and distribution patterns of species. Detections 
of rare species are often limited, and many surveys rely on volun-
teers that cannot implement emerging techniques such as direct 
sampling (e.g. Conroy et al., 2008; Guisan et al. 2006; Pacifici et al., 
2012). Citizen science is an underused means by which to add sam-
ples to a study or monitoring effort at low cost, and participation in 
such programs is rapidly increasing (Theobald et al., 2015). Species 
such as tricoloured blackbirds that have low site fidelity also present 
a challenge in SDMs because it is difficult to know where to sam-
ple for them in a given year. Citizen science data can improve sam-
pling effort for these types of species because the spatial coverage 
of citizen science observations may be far greater than structured 
surveys with fixed spatial locations used in many studies. Citizen 
science data for any taxonomical group are subject to many of the 
same issues affecting all scientific research (Bird et al., 2014) and 
perhaps even more prone to them (Geldmann et al., 2016). Here, we 
show how citizen science data can be used to model the distribution 
of a rare species by combatting the issues of spatial bias and class 
imbalance by spatially under- sampling the data on which the model 
is trained.

F IGURE  6 Predicted distribution maps 
for tricoloured blackbirds in the breeding 
season (left panel) and winter (right panel). 
The colours represent the probability of 
detection for a tricoloured blackbird at a 
given pixel. In pixels with warmer colours, 
there is a higher probability of detecting a 
tricoloured blackbird. Note the different 
scale for each panel–124 –122 –120 –118
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